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Outline

» A profound shift in computing

» Challenges on the road ahead

« Parthenon, an exemplar of a productive path for computational astrophysics

» Phoebus, an exciting new code for relativistic astrophysics
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The end of an era
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CPUs don’t have much runway Moore’s law isn’t
quite dead

42 Years of Microprocessor Trend Data
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HPC systems keep getting faster...
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Cores in #1 on Top 500

...but that comes at a cost
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Accelerators are increasingly common.
40% of aggregate performance in NVIDIA
GPUs.

Systems are getting really big!
2x every 1.8 years. 10x every 6 years.
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Why accelerators?

» Like everything else in computing, it's all about power
» Top systems now run at 10-30 MW!
* Accelerators can deliver more flops/watt

Great at
editing
Microsoft
Word
documents
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Roughly the same number of transistors
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Specialization can dramatically improve efficiency
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Specialized technologies are the future

:Fhe Declll;e

A New Golden A Domain-Specifi
Age for of Computers Architecture
Computer as a General for Deep Neural
Architecture Purpose Networks

Technology

Microsoft project
catapult Cerebras Systems  European Processor
Al Wafer Initiative

Google’s Tensor
Processing Unit

Intel Stratix 10 NX FPGA with

&L Alintegrated HBM2 =
'@ ;03 AAMoS Habana / Intel Gaudi Al Chip Qualcomm Cloud Al 100

NATIONAL LABORATORY




Japan charts a course for future systems

for A64FX Manycore Processor Vertical integration:

and “Fugaku”

hardware architects,

Mitsuhisa Sato*, Yutaka Ishikawa*, Hirofumi Tomita*, Yuetsu Kodama*, Tetsuya Odajima*, C O- DESIgn —_ SOftW are St ack a nd
- )

Miwako Tsuji*, Hisashi Yashiro*, Masaki Aokif, Naoyuki Shidaf, Ikuo Miyoshif,
Kouichi HiraiT, Atsushi Furuyaf, Akira Asatof, Kuniki Morital’, Toshiyuki Shimizu®

* RIKEN Center for Computational Science

Email: {msato, yutaka.ishikawa, htomita, yuetsu.kodama, tetsuya.odajima, miwako.tsuji, h.yashiro} @riken.jp

t FUJITSU LIMITED, Japan

Email: {m-aoki, shidax, miyoshi.ikuo, k-hirai, furuya.atsushi, asato, morita.kuniki, t.shimizu} @fujitsu.com

application scientists
in co-design

“For future systems beyond exascale, a more disruptive architecture,
such as accelerators and specialized hardware, would be required.”

Exireme Heterogeneity 2018:
Productive Computational Science in the Era of Exireme
Heterogeneity

Report for
DOE ASCR Basic Research Needs Workshop on Extreme
Heterogeneity
N
‘tg Los Al january 23-25, 2018

NATIONAL L

ASCR Workshop on Reimagining Codesign

Sponsored by the U.S. Department of Energy,
Office of Advanced Scientific Computing Research

March 16-18, 2021
11:00 am to 5:00 pm ET




Modern systems are complex and deeply hierarchical
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Writing code for modern HPC systems: the old way

\ .
E:r?slifasi:ere Astrophysics codes with CUDA for GPUs
* prhon (incomplete list)
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Y, e RamsesGPU
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Writing code for modern HPC systems: a better way

Kokkos (Sandia) provides
abstractions for data and
parallel execution that
enable codes to run
transparently across
architectures

« Technological diversity has motivated the
development of abstractions for
performance portability

 Wraps CUDA, OpenMP, SYCL, etc.

» Goal is compelling performance across
architectures with single source
implementations

Kokkos kernels provide
portable math libraries

Case-study: K-Athena achieves comparable

CPU performance to Athena++ and better RA v Raja/CHAI provides similar
GPU performance than similar native CUDA capabilities. {Livermore)

codes. See Grete+20.
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Writing code for modern HPC systems: a better way

» Widely-adopted and well-supported abstractions for performance portability
“solve” a major challenge with the heterogeneous HPC landscape

« But serious challenges remain
— Optimal algorithms can differ across architectures

— Abstractions can’t change fundamental limitations of architectures — still have to have
knowledge of architectures to write performant code

— Extreme parallelism and Amdahl’s law — a Summit node has ~3x10% CUDA cores
— Extreme distributed scale

= Asynchrony is a must

» |Load balancing is essential
= |/Ois a pain

= Compute-in-network?

1% Los Alamos
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Writing code for modern HPC systems: a better way

» Widely-adopted and well-supported abstractions for performance portability
“solve” a major challenge with the heterogeneous HPC landscape

« But serious challenges remain
— Optimal algorithms can differ across architectures

Abstractions can’t change fundamental limitations of architectures — still have to have
knowledge of architectures to write performant code

Extreme parallelism and Amdahl’s law — a Summit node has ~3x10* CUDA cores
Extreme distributed scale
= Asynchrony is a must

Solutions to these problems can be shared
= Load balancing is essential across applications of a similar flavor.

= |/Ois a pain Domain specific abstractions.
= Compute-in-network?

1% Los Alamos
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Parthenon: a performance portable, physics agnostic
framework for block-structured AMR applications

« Whatis it? A “framework” designed to enable straightforward development of fast, portable, scalable
physics codes built on block-structured AMR

« Layering on domain specific data types and loop abstractions can make it straightforward to write
consistently performant code B e e G T - O - B -

L4 What does it prOVide? <> Code Issues 130 Pull requests 11 Discussions Actions Projects 1
- Mesh management w/AMR

; ¥ develop ~ Go to file Add file ~ Code~ | About
— Load balancing
. . Parthenon AMR infrastructure
- Commun'cat'on . jdolence Merge pull request #616 from lanl/jdolen... = + 12daysago ‘Y 2,960
01 Readme
I/O B .github Update apply-formatting.yml (#520) 6 months ago &5 View license
- Data Structu reS to Store and Organlze cmake Add SHA256 checksum to bash uploader ... 6 months ago

meSh-baSGd data and parthle data docs Add output triggering by signaling (#605) . N
—_— Memory management example Boundary bugfix(es) and exposing (FluxDi... 2 months ago i e
— Task-based parallelism external Update to latest Kokkos release (#536) Simonthsiago EnEEpel:
A i i XDi... 2 months ado + 17 releases
— Abstractions to flexibly represent parallel loops script U -

- Adjustable parameters to adapt to different architectures github.co m/Ianl/pa rthenon
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Parthenon basics

* Downstream applications define a driver that expresses the basic control flow
» Represented as a list of tasks and their dependencies

: . A task with one or

TaSkLlst tl /] more kernels ArgumentS to task
Task dependency function

TaskID none(9); A\ \ A

auto task_a
auto task_b

G =)
tl.AddTask(none, some_package::compute_a, argl, arg2, arg3, ..); }Wheﬁamg@ca”
auto task_c

tl.AddTask(none, other_package::compute_b, argA, argB, ..); et

t1.AddTask(task_a|task_b, third_package::compute_c, .); Gengrrenty

\

Depends on task_a and task_b

// task list gets executed, perhaps concurrently with other task lists

» Task parallelism enables asynchrony and concurrency

~
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Parthenon basics

» Typical loops are replaced with Parthenon-provided constructs

parthenon: :par_for( » Overloaded loop abstraction
loop_pattern_tag, » Execution policy
“My kernel”, > Kernel identifier
exec_space, » Execution space
nlo, nhi, klo, khi, jlo, jhi, ilo, ihi, » Loop bounds

KOKKOS_LAMBDA(const int n, const int k,
const int j, const int i) {

v(n,k,j,i) = 0.0; > Body of kernel

> Leaky abstraction

3

» Behind the scenes, changing tags can transform this into a Kokkos loop with
different execution policies, basic C++ for loops, and other approaches are
being implemented

1% Los Alamos
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Parthenon basics

» Applications describe the fields on the mesh and Parthenon manages the
memory and provides simple accessors

Metadata m({Metadata::Cell, Metadata::Independent, Metadata::Intensive,
Metadata::Conserved, Metadata::WithFluxes});

hydro->AddField(“density”, m);

auto my_var = mb_data->Get(“my favorite variable”).data; // outside kernel .
Access a field on a block of cells

my_var(k,j,i) = 0.8; // inside a kernel

auto my_pack = mb_data->PackVariables({“my var1”, “my var2”, .}); // outside kernel .
Access several fields on a block

my_pack(var_index,k,j,i) = ©.0; // inside a kernel

auto my_pack = m_data->PackVariables({“my var1”, “my var2”, .}); // outside kernel .
Access fields on several blocks

my_pack(block_index, var_index,k,j,i) = 0.0; // inside a kernel

%) Los Alamos Data packaging provides opportunities to control task granularity
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Parthenon basics

 Includes useful examples that serve as starting points for downstream apps

162 cells per block 82 cells per block 42 cells per block

» Calculate m with adaptive mesh refinement!

« Basic hydro code with AMR that’s very scalable and performant on CPUs and
GPUs can be written in ~a day. I've done it!

AAAAAAAAAAAAAAAAAA



Multiple codes are already based on Parthenon

° AthenaPK AthenaPK MHD performance

performance/scalability % 107 | e
https://qgitlab.com/theias/hpc/imstone/athena-parthenon/athenapk snapshot > B _!3 )
— Hydro, MHD, thermal conduction Ll
RK3 WENOZ Mesh 2563 MB 128% MHD T
» KHARMA https://github.com/AFD-lllinois/kharma s PLot Mot 256° MB 1287 D 1@
— GRMHD. Ask B. Prather and C. Gammie! RK3 WENOZ HMesh 2567 MB 64° 1 g | e
RK3 WENOZ Mesh 256> MB 1283 1 b © O3 L Unitoho orid coli
es 3 3 4 ® f_g ¥ Grid with 4 levels GPUs
* Phoebus nttps://github.com/lanl/phoebus m::;(::MMMe:h22:63M:BZZZq B 0.0 St 4 leves s

10° 10! 10? 10°

_ |V|0re on th|S |ater RK3 PPM Mesh 2563 MB 1283 1 L4 Num nodes
e RK3 PPM Mesh 2563 MB 2563 1 °
RK1 DC Mesh 256° MB 647 1
* RI OT RK1 DC Mesh 256 MB 1283 - o | P. Grete
— Multi-material hydro, radiation diffusion, i 3;”;“;:22;‘:::3: .
subgrid turbulence, reactions, high explosives RK2 PLM Mesh 256 MB 128° ] o
RK2 PLM Mesh 2563 MB 2563 - L
i Zapp VL2 PLM Mesh 256° MB 643 1 L
. . . VL2 PLM Mesh 2563 MB 1283 A
- K|net|C phySICS VL2 PLM Mesh 2563 MB 2563 L

100 200 300 400 500
Mzone-cycles/s
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https://gitlab.com/theias/hpc/jmstone/athena-parthenon/athenapk
https://github.com/AFD-Illinois/kharma
https://github.com/lanl/phoebus

A film by Phil Grete...
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Phoebus: a new open source code for relativistic astro

Phoebus = (10*) PHifty One Ergs Blows Up a Star

Target Applications
* Accreting single and binary black holes
* Core-collapse supernovae .
 Compact object mergers

Physics
Relativistic hydro/MHD
Stationary, time-dependent, and
dynamical spacetimes
Radiation transport
“Realistic” microphysics

« Almost open source — just need to click the button

» Very active development to build out all the necessary capabilities — not

everything is available yet

» Core team: Jonah Miller, Ben Ryan, Luke Roberts, Josh Dolence

* Excited to welcome new collaborators!

1% Los Alamos
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Phoebus is built on portable, open source components

Rl
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MOCMC: a new method for relativistic transport
(Ryan & Dolence, 2020)

Hybrid method evolves a gray moment system closed with spectral and
angular information from samples of the full distribution function.

bound

Represents conservation of

Moment Sector

energy-momentum

Mediates interactions of radiation and

matter via four-force
Transport of energy-momentum determined °
by appropriately averaged closure

Sample Sector
Lagrangian “particles” that hold complete
species/spectral information at a point in
space and in a particular direction
Samples glued to geodesics
Sample intensities updated via transport
equation

Monte Carlo

T=T,7t=0

MOCMC

\ 4

I=B(Tbound )

T=T,s==

T=T,t=0

1=B(T,) 1=B(T,)




Conclusions

 The HPC landscape is changing and we're headed toward an era where
compute specialization will be prevalent

» There are opportunities for co-design that can influence this future

» Technological heterogeneity will be a major challenge unless we shift our
approach to developing the computational tools for astrophysics

» Parthenon provides convenient functionality and a bright future for block
structured AMR applications

» Phoebus is a new (soon-to-be) open source code for relativistic astro that
promises excellent performance, portability, and unique physics capabilities
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